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ABSTRACT

Solar eruptions are explosive release of coronal magnetic field energy as manifested in solar flares and coronal mass ejection. Observa-
tions have shown that the core of eruption-productive regions are often a sheared magnetic arcade, i.e., a single bipolar configuration,
and, particularly, the corresponding magnetic polarities at the photosphere are elongated along a strong-gradient polarity inversion
line (PIL). It remains unclear what mechanism triggers the eruption in a single bipolar field and why the one with a strong PIL is
eruption-productive. Recently, using high accuracy simulations, we have established a fundamental mechanism of solar eruption ini-
tiation that a bipolar field as driven by quasi-static shearing motion at the photosphere can form an internal current sheet, and then
fast magnetic reconnection triggers and drives the eruption. Here we investigate the behavior of the fundamental mechanism with
different photospheric magnetic flux distributions, i.e., magnetograms, by combining theoretical analysis and numerical simulation.
Our study shows that the bipolar fields of different magnetograms, as sheared continually, all exhibit similar evolutions from the slow
storage to fast release of magnetic energy in accordance with the fundamental mechanism, which demonstrates the robustness of
the mechanism. We further found that the magnetograms with stronger PIL produce larger eruptions, and the key reason is that the
sheared bipolar fields with stronger PIL can achieve more non-potentiality, and their internal current sheet can form at a lower height
and with a larger current density, by which the reconnection can be more efficient. This also provides a viable trigger mechanism for
the observed eruptions in active region with strong PIL.
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1. Introduction

Solar flares and coronal mass ejections (CMEs) are violent erup-
tions on the Sun, and essentially they are manifestation of the
explosive release of magnetic energy in the solar corona. It is
commonly believed that the solar magnetic fields are generated
at the base of the convection zone, often in the form of thin, in-
tense flux tubes, and emerge outwards slowly, eventually into the
corona through the solar surface (i.e., the photosphere). There-
after, the coronal magnetic fields will be continuously, but rather
slowly, dragged at their footpoints by the photospheric surface
motions, often in a organized form such as shearing and rota-
tional flows, which is also inherent to the flux emergence pro-
cess. During this process, magnetic free energy in the corona
gradually accumulates, and the magnetic field configuration is
often built up to a highly stressed one of S shape (e.g., the coro-
nal sigmoids frequently observed in X-ray and EUV images)
prior to an eruption. Before the eruption onset, the coronal sys-
tem is in an equilibrium state, in which the outward magnetic
pressure of the low-lying, strongly stressed flux is balanced by
the inward magnetic tension of the overlying, mostly un-sheared
flux. At a critical point, the eruption suddenly begins with a
catastrophic disruption of this force balance, during which the
free magnetic energy is rapidly converted into impulsive heating
and fast acceleration of the plasma.

It remains an open question how solar eruptions are initi-
ated, namely, how the force balance before eruption is suddenly

destroyed and what drives the eruption, for which many theo-
ries have been proposed (Forbes et al. 2006; Shibata & Magara
2011; Chen 2011; Schmieder et al. 2013; Aulanier 2014; Janvier
et al. 2015). The existing theories are often divided into two cat-
egories, one is based on the ideal magnetohydrodynamic (MHD)
instability, and the other on magnetic reconnection. The first cat-
egory generally requires the pre-existence of magnetic flux rope
(MFR), a group of twisted magnetic field lines that wind tightly
about a common axis, and the ideal instabilities of the MFR,
such as kink instability and torus instability can initiate erup-
tions (Kliem & Török 2006; Török & Kliem 2005; Fan & Gib-
son 2007; Aulanier et al. 2010; Amari et al. 2018). In the second
category, the most frequently mentioned models are the breakout
model and the tether-cutting reconnection model. The breakout
model requires a quadrupolar magnetic configuration in which
a magnetic null point situates above the core of sheared mag-
netic flux. It is proposed that the reconnection at the null point
removes the overlying restraining flux to trigger an eruption (An-
tiochos et al. 1999; Aulanier et al. 2000; Lynch et al. 2008;
Wyper et al. 2017). The tether-cutting reconnection model relies
on only a single sheared arcade, i.e., a bipolar magnetic field.
With increasing of the magnetic shear, a current sheet (CS) will
be formed slowly at a low altitude above the photospheric mag-
netic PIL. Initially, the magnetic reconnection at that CS slowly
reduces the downward magnetic tension force by “cutting the
magnetic tethers”, and then the upward magnetic pressure force
is unleashed and pushes up the flux to rise, which in turn en-
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hances the tether-cutting reconnection. After a short interval, the
process becomes runaway, which triggers the eruption, and the
fast rising flux stretches up the surrounding envelope magnetic
field, forming a new elongated CS above the PIL. The magnetic
reconnection of the newly-formed CS further speeds up the erup-
tion to form a CME (Moore & Labonte 1980; Moore & Roume-
liotis 1992; Moore et al. 2001). Compared with other models,
the tether-cutting scenario is the simplest one in terms of mag-
netic topology, since it relies on a single magnetic arcade (cor-
responding to a pair of opposite polarities at the photosphere)
without any additional special topology, such as null point and
MFR. However, unlike other models that have been extensively
realized in numerical 3D MHD simulations 1, the tether-cutting
model has not yet been validated in any 3D MHD simulations,
and thus remains a conjectural “cartoon.”

Actually, early simulations in 2D or translational invariant
geometries (Mikic & Linker 1994; Amari et al. 1996; Choe &
Lee 1996) show that by continuous shearing of its footpoints, a
single magnetic arcade asymptotically approaches an open state
containing a CS, which is consistent with the Aly-Sturrock con-
jecture (Aly 1991; Sturrock 1991). When one takes into account
finite resistivity, the system experiences a global disruption once
reconnection sets in at the CS, which, in particular, begins at the
point with the largest current density in the CS. Such an simple
and efficient mechanism of eruption initiation is only recently
established in fully 3D by Jiang et al. (2021) with an ultra-high
accuracy MHD simulation. That simulation is initialized with
a bipolar potential field. Through surface shearing motion along
the PIL, a vertical CS forms quasi-statically above the PIL. Once
the CS is sufficiently thin such that ideal MHD is broken down,
reconnection sets in and instantly triggers the eruption. The sim-
ulation shows that the reconnection not only cuts the magnetic
tethers, but also results in strong upward tension force, and it is
the latter that plays the key role in driving the eruption, that is,
the slingshot effect of the reconnection drives mainly the erup-
tion. We note that this mechanism is different from the tether-
cutting model in twofold. Firstly, the tether-cutting model pro-
posed that the reconnection only plays a role of cutting the con-
finement of the field lines, and it is the unleashed magnetic pres-
sure that drives the eruption. Secondly, the tether-cutting model
assumed that before the onset of the eruption (i.e., the start of
impulsive phase of eruption), there is a relatively long phase of
slow reconnection with tens of minutes to a few hours, which
gradually cuts the tethers, until a “global instability” occurs can
then the eruption begin (Moore et al. 2001). Such slow reconnec-
tion is not runaway, and it does not exist in Jiang et al. (2021)’s
simulation. In this sense, the model as demonstrated by Jiang
et al. (2021) stands alone with the original tether-cutting model,
and hereafter, we called this mechanism as the BASIC model,
where the acronym "BASIC" refers to the key ingredients as in-
volved in the mechanism, that is, a Bipolar magnetic Arcade as
sheared evolves quasi-Statically and forms Internally a Current
sheet.

As is demonstrated that the solar eruption can be initiated
from a single bipolar field by the BASIC mechanism, a natu-
ral question arises; how does the mechanism operate differently
with different flux distributions of bipolar field on the photo-
sphere? Since Jiang et al. (2021) carried out numerical experi-
ments for only one set of magnetic flux distribution on the bot-
tom surface, in this paper we will investigate the BASIC mecha-

1 Note that the aforementioned references cited for the ideal MHD in-
stability and the breakout models are mostly based on numerical simu-
lations.

nism with different magnetic flux distributions. In particular, we
aim to know what kind of flux distribution of bipolar field on the
photosphere is favorable for producing major eruptions and why.
This study is motivated by a well known fact from observations
that major solar eruptions occur predominantly in source regions
having a pronounced PIL with both an elongated distribution of
flux along it and a strong gradient of field across it (Schrijver
2007; Toriumi & Wang 2019). Such a PIL is mostly often found
in a particular type of sunspot group, the δ sunspots, which are
highly flare-productive as first found by Künzel (1959). By ex-
amining the magnetic properties of regions associated with al-
most 300 M- and X-class flare, Schrijver (2007) found that the
magnetic flux distribution in the flare site of these regions is of-
ten of bipolar configuration with a characteristic pattern: a rela-
tively elongated, strong-gradient PIL with strong magnetic shear.
Such a pattern is even employed in developing empirical models
of flare forecast by calculating the length of the high-gradient
PIL (Falconer et al. 2002; Falconer 2003). So, why a strong-
gradient and long PIL, or simply a strong PIL, is more favorable
for producing eruption? To the best of our knowledge, the phys-
ical reason behind the correlation of this property of PIL and
the eruption-productiveness has never been explained explicitly.
This paper is devoted to answer this question based on the BA-
SIC mechanism, by performing a series of 3D MHD simulations
similar to Jiang et al. (2021)’s but with different photospheric
flux distributions (or, magnetograms) for a comparative study.
Some of magnetograms have strong PIL while others have weak
PIL (i.e., short and weak-gradient one). As will be seen, nearly
all the simulations follow the BASIC scenario of quasi-static for-
mation of CS and triggering of eruption by reconnection, which
demonstrates the robustness of the BASIC mechanism, and strik-
ingly, the magnitude of the eruption is highly dependent on the
strength of the PIL.

The paper is organized as follows. In Sect. 2.1, we define
the magnetograms for the bipolar fields with different mag-
netic flux distributions. Before showing the simulation results, in
Sect. 2.2 we analyze the key parameters associated with the non-
potentiality and CS of the open field configuration corresponding
to these different bipolar fields, since the BASIC mechanism is
closely linked to the open field. Then we compare the results of
MHD simulations for the different bipolar fields in Sects. 2.3 and
2.4, and give our conclusion and discussions in Sect. 3.

2. Numerical Experiments

2.1. Setting of magnetograms

Following Amari et al. (2003a) and Jiang et al. (2021), we model
the photospheric magnetogram of a bipolar field by the compo-
sition of two Gaussian functions,

Bz(x, y, 0) = B0e−x2/σ2
x (e−(y2−y2

c )/σ2
y − e−(y2+y2

c )/σ2
y ), (1)

where σx and σy control the extents of the magnetic flux dis-
tribution in x and y directions, respectively, and yc control the
distance between the two magnetic polarities in the y direction.
By adjusting these controlling parameters, we obtain different
magnetograms with different flux distributions, some of which
have long and strong-gradient PIL while other have short and
weak ones. For example, by increasing σy but fixing σx and yc,
the shape of the polarities gradually changes from flat to round
and the strong-gradient PIL becomes shorter, as can be seen in
Fig. 1 with four values of σy. In another way, by increasing yc
but fixing σx and σy, the two opposite polarities become further
away from each other and thus the field gradient across the PIL
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decreases, as shown in Fig. 2 for four values of yc. For a reason-
able comparison, we use the same value for the total unsigned
magnetic flux of all the different magnetograms, as such the dif-
ferent magnetograms only differ in the distribution of the same
amount of magnetic flux. Therefore, the larger the area of mag-
netic polarity is, the weaker the average magnetic field strength
is, and vice versa. For the specific values of the parameters, we
choose [−10, 10]× [−10, 10] with length unit of 14.4 Mm as our
computational domain. The values for the parameters as shown
in Figs. 1 and 2 are given in their captions.

2.2. The open field

The BASIC mechanism is closely linked to the fully open field,
because by ideally shearing a magnetic arcade, it asymptotically
approaches the open field state. In Fig. 3, we show an exam-
ple of the open field (and compared with the corresponding po-
tential field) for a bipolar magnetogram. The procedure of the
open field computation is as follows: first, we calculate the po-
tential field Bpot,u(x, y, z) based on a unipolar magnetogram de-
fined by Bz,u(x, y, 0) = sign(y)Bz(x, y, 0). The potential field is
solved using the Green’s function method. Thus, all the field
lines are open, going outwards from the bottom boundary to in-
finity. Then, we reverse the direction of the field lines that root
in the original negative polarity, and in our case this can be sim-
ply done by defining Bopen(x, y, z) = sign(y)Bpot,u(x, y, z) accord-
ing to the symmetry of the field. In this way, all the field is still
open and current free, except at the interface (i.e., the y = 0
plane) between the inverse-directed field lines, which forms the
CS. Therefore this is the open field corresponding to the bipolar
flux distribution.

The open field has important implications on the content of
energy that a sheared bipolar field of the same magnetogram can
store, as well as the intensity of CS that the sheared bipolar field
can form. According to the Aly-Sturrock conjecture, the energy
of such open field is the upper limit of the energy of all possible
force-free fields with a given magnetic flux distribution on the
bottom and a simply connected topology (Aly 1991; Sturrock
1991). Therefore, the upper limit of free magnetic energy that
can be reached in a sheared arcade is the open field energy sub-
tracted by the corresponding potential energy of the same mag-
netogram,

Euf = Eopen − Epot, (2)

where Euf denotes the upper limit of the free energy. If using the
ratio of free magnetic energy to the potential energy as a mea-
sure of the non-potentiality of the field, namely N = Efree/Epot,
the upper limit of the non-potentiality of a sheared arcade can
achieve is Nmax = Euf/Epot. The degree of non-potentiality N
of a field has been suggested as a critical factor in producing
major eruptions (Moore et al. 2012; Sun et al. 2015), and thus
Nmax is an important indicator for the eruption capability of a
magnetogram. For example, Moore et al. (2012) studied a large
number of active regions and found that “there is a sharp upper
limit to the free energy the field can hold that increases with the
amount of magnetic field in the active region, the active region’s
magnetic flux content, and that most active regions are near this
limit when their field explodes in a coronal mass ejection/flare
eruption.” In particular, using a proxy of magnetic shear for the
free energy, they concluded that the non-potentiality N is on the
order of one for the active region’s core field, i.e., field rooted
around the flare PIL, when the field is close to eruption. There-
fore, for a sheared bipolar field that can produce major eruption,

it should have its upper limit of non-potentiality somewhat close
or above one, i.e., Nmax & 1, and by calculating this parameter
for a given magnetogram, one can charge whether it is capable
of generating large eruption or not.

The potential field Bpot and the open field Bopen are uniquely
defined by

Bz|pot(x, y, 0) = Bz|open(x, y, 0) = Bz(x, y, 0) (3)

and an asymptotic decay at infinity. These fields have energies
given, respectively, by the standard relations (e.g., Amari et al.
2003a)

Epot =
1

16π2

∫
S×S ′

Bz(x, y, 0)Bz(x′, y′, 0)
|r − r′|

dsds′,

Eopen =
1

16π2

∫
S×S ′

|Bz(x, y, 0)Bz(x′, y′, 0)|
|r − r′|

dsds′. (4)

The upper limit of free magnetic energy can be obtained by
Eq. (2), and then the non-potentiality Nmax of each magnetogram
can be calculated. By the way, the magnetic field (potential field
and open field) in volume can be obtained from the bottom mag-
netogram, and then the magnetic energy can be obtained by inte-
gration E = 1

8π

∫
B2dV . However computing the magnetic field

in the full volume is very time consuming. For example, with
the Green’s function method, the computing time scales with the
grid number as N5 (assuming the volume is a cube and the length
of each side is N). That is why we choose to use Eq. (4) which is
much faster in calculation, since the magnetic energy can be ob-
tained directly from the magnetogram without knowing the mag-
netic field in the full volume. The magnetic energy obtained by
these two methods is basically the same. For the magnetogram in
Fig. 1A, the potential field energy and open field energy obtained
by using the first method are 8.923×1029 erg and 2.059×1030 erg,
respectively, and the ones obtained by Eq. (4) is 8.603×1029 erg
and 2.090×1030 erg, respectively, with relative errors of 3.586%
and 1.483%, respectively.

In the open field, all the magnetic field lines have one end
rooted at the bottom surface and the other end extending up to
infinity, so the field lines on the two side of the PIL run antiparal-
lel, and in between a CS forms (see Fig. 3B and C). The current
density outside CS is zero, and all free magnetic energy is stored
through the CS (but not in the CS). In the 3D prospective view
of the open field as shown in Fig. 3, the structure of the CS is de-
noted by the red iso-surface of current density J = 0.34×10−3 A
m−2. The central cross section of the open field and the profile of
the current density along the central vertical line are also shown
in Fig. 3. Since the magnetic field is discretized with a finite res-
olution, the current density in the CS is not infinite but rather
changes with height; it first increases from nearly zero, reaches
a peak value at a certain height, and then decrease towards zero
again. Therefore, the maximum current density and its height
can be obtained by calculating the current density in the CS. We
consider that the CS of open field can be used as a proxy of the
CS formed in the core field in our simulations, and particularly,
the location of the maximum current density in the open field
CS indicates the position where reconnection most likely starts
to trigger an eruption, and the maximum current density itself
should be related to the reconnection rate. Therefore, the two pa-
rameters; the peak value of current density of the open field CS
and its height, are essential indicator of the strength of the CS,
which is correlated with the strength of the eruption once being
triggered. In order to calculate the current density of the open
field CS, we first calculate the open field by the Green’s function
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Fig. 1. Magnetic flux distribution and surface rotation flow at the bottom surface (i.e., z = 0). The background is color-coded by the vertical
magnetic component Bz, and the vectors show the rotation flow. The four panels A, B, C and D refer to magnetogram with σy = 0.5, 1.0, 1.5 and
2.0 respectively, while σx = 2.0 and yc = 0.8 are fixed. Note that the values of σx, σy and yc are normalized by a unit length of 14.4 Mm.
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Fig. 2. Same as Fig. 1 but with different values of yc = 0.1, 0.6, 1.1 and 1.6 respectively, while σx = 2.0 and σy = 1.0 are fixed.
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magnetic field lines on the central cross section (i.e., the x = 0 plane). D Profile of current density along z axis. Note that here with finite grid
resolution, the CS has a finite thickness of 360 km. Thus the current density is not infinite.

method and then use the second-order central difference to get
the current density in the CS.

Figure 4 shows the result for different magnetograms spec-
ified by the parameter σy changing from 0.5 to 2.5 with incre-
ment of 0.1 (while σx = 2.0 and yc = 0.8 are fixed), and Fig. 5
shows the results for magnetograms with parameter yc chang-
ing from 0.1 to 2.1 with increment of 0.1 (with σx = 2.0 and
σy = 2.0 fixed). Specifically, Fig. 4A shows the variation of
different magnetic energies and the non-potentiality Nmax with
parameter σy. With the increase of σy, all energies decrease, and
Nmax also shows an overall decrease from about 1.5 to below
1.0, which clearly shows that, overall, the more elongated the
magnetic polarity is, the more the upper limits of free energy
and non-potentiality the magnetogram can reach (except that a
too small σy actually reduces Nmax, which is discussed below).
Figure 5A shows the variation of magnetic field energies and
the non-potentiality Nmax with parameter yc. A similar decrease
pattern is also seen (except that the potential energy increases
mildly) with the increase of yc, which shows that the closer the
two magnetic poles are, the more free magnetic energy (and non-
potentiality) the magnetogram can reach at most.

We note that, in Fig. 4A, Nmax has a maximum at σy ∼ 0.8
and a smallerσy actually reduces Nmax. This is because as the po-
larity distance is fixed at yc = 0.8, a too small value of σy ≤ 0.8,
i.e., a too much concentration of the polarity in the y direction,
will actually make strong magnetic flux distributed farther away
from the PIL, and thus the magnetic field gradient near the PIL is
reduced. It hints that the gradient on the PIL is a more important
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indicator for Nmax. To confirm this, we calculate the line inte-
gral of gradient of the vertical field Bz across the PIL for each
magnetogram, named as L, which is defined by

L =

∫
PIL

∂Bz

∂y
dx. (5)

Figure 6A shows the diagram of L versus Nmax for all the differ-
ent sets of parameters shown in Figs. 4 and 5. Strikingly, Nmax
increases monotonically with the increase of L, which conforms
our argument. Hereafter we will refer to the parameter L as sim-
ply the strength of the PIL. Note that L for σy = 0.5 is less than
that of σy = 0.8, and thus Nmax of the former is less than that of
the latter. We also note that with decreasing of L, Nmax decreases
more and more fast.

For the characteristic of the CS, Fig. 4B shows that with the
increase of σy, the peak value of current density decreases and
its height increases. This indicates that the more elongated the
magnetic polarity is, the stronger the CS can form. In Fig. 5B,
with the increase of yc, the maximum current value decreases
and its height increases. This shows the closer the magnetic po-
larities are, the stronger the CS can form. Again, the PIL strength
L is crucial. As can be seen in Fig. 6, with the increase of L,
the peak value of current density increases monotonically overall
(except some points due the discretization errors), and the height
decreases systematically, which means that the PIL strength is
positively correlated with the strength of the CS.

2.3. Settings of Numerical Model

For each magnetogram, we carried out an MHD simulation
which begins with the potential field and is driven continually by
a rotational flows at each magnetic polarity at the lower bound-
ary, which creates magnetic shear along the PIL. The rotational
flow is defined as

vx =
∂ψ(Bz)
∂y

; vy =
∂ψ(Bz)
∂x

(6)
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Fig. 6. The relationship between the non-potentiality Nmax and distri-
bution of CS and the line integral of the Bz gradient across the PIL on
the magnetogram. A The diamond represents magnetic energies, and
black, blue and green represent potential energy, open field energy, and
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The black squares represents the maximum current density, and the red
solid curves represents the height of the maximum current density.

with ψ given by

ψ = v0B2
z e−(B2

z−B2
z,max)/B2

z,max , (7)

where Bz,max is the largest value of the photosphere Bz, and v0
is a constant for scaling such that the maximum of the surface
velocity is 4.4 km s−1, close to the typical flow speed in the pho-
tosphere (∼1 km s−1). The flow speed is smaller than the sound
speed by two orders of magnitude and the local Alfvén speed by
three orders, respectively, thus representing a quasi-static stress
of the coronal magnetic field. The flow pattern has been shown
in Figs. 1 and 2. This is an incompressible, anti-clockwise rota-
tional flow that does not change with time, and it will not modify
the flux distribution at the bottom surface.

We numerically solve the full MHD equations with both
coronal plasma pressure and solar gravity included, in a 3D
Cartesian geometry by an advanced conservation element and
solution element (CESE) method implemented on an adaptive
mesh refinement (AMR) grid (Jiang et al. 2010; Feng et al. 2010;
Jiang et al. 2016; Jiang et al. 2021). Since the controlling equa-
tions, the numerical code and essentially all the setting of ini-
tial and boundary conditions are the same as used in Jiang et al.
(2021), the readers are referred to that paper (in particular, the
Method part) for more details. We note that no explicit resis-
tivity is used in the magnetic induction equation, but magnetic
reconnection can still occur due to numerical diffusion when a
current layer is sufficiently narrow such that its width is close to
the grid resolution.

The computational volume spans a Cartesian box of approx-
imately (−270,−270, 0) Mm 6 (x, y, z) 6 (270, 270, 540) Mm
(where z = 0 represents the solar surface). The volume is large
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enough such that the simulation runs can be stopped before the
disturbance from the simulated eruption reaches any of these
boundaries. The full volume is resolved by a block-structured
grid with AMR in which the base resolution is ∆x = ∆y = ∆z =
∆ = 2.88 Mm, and the highest resolution of ∆ = 360 km is used
to capture the formation of CS and the subsequent reconnection.

We have run in total nine experiments for a selected set in
the parameter space as listed in Table 1. Specifically, CASE I to
CASE IV represent σy = 0.5, 1.0, 1.5 and 2.0, respectively (with
fixed σx = 2.0 and yc = 0.8). CASE V to CASE VIII represent
yc = 0.1, 0.6, 1.1 and 1.6, respectively (with fixed σx = 2.0
and σy = 1.0). In order to verify the analysis of free magnetic
energy maximum in Fig. 4, we set CASE IX, in which σx = 2.0,
σy = 0.8 and yc = 0.8.

Experiments
Expression

L (104 G)
σx σy yc

CASE I 2.0 0.5 0.8 2.12

CASE II 2.0 1.0 0.8 2.38

CASE III 2.0 1.5 0.8 1.36

CASE IV 2.0 2.0 0.8 0.83

CASE V 2.0 1.0 0.1 3.69

CASE VI 2.0 1.0 0.6 2.90

CASE VII 2.0 1.0 1.1 1.56

CASE VIII 2.0 1.0 1.6 0.53

CASE IX 2.0 0.8 0.8 2.86
Table 1. The parameters σx, σy and yc that define the nine magne-
tograms for the simulated experiments. We also give the line integral
(L) of the magnetic field gradient on the PIL for each magnetogram.

2.4. Simulation results

The BASIC scenario as demonstrated in Jiang et al. (2021) is
that, by continually shearing a bipolar coronal field, a CS forms
slowly within the arcade and once reconnection sets in, the
whole arcade explodes and forms a fast-ejecting magnetic flux
rope (i.e., CME). Here we first show briefly an example of such
process in CASE I, and then analyze the different runs based on
the different magnetograms.

Figure 7 and Supplementary Movie 1 show evolution of
magnetic field lines, current density, and velocity during the
whole simulation process. The time unit is τ = 105 s (all the
times mentioned in this paper are expressed with the same time
unit). After a period of surface flow driving, the magnetic field
structure has evolved from the initial potential field to a config-
uration with a strong shear immediately above the PIL, where
the current density is enhanced, while the envelope field is still
current-free (t ≤ 76). It can be clearly seen that the entire mag-
netic field structure inflates during the energy injection stage,
since the magnetic pressure of the core field increases gradu-
ally by the continuous shear. As a result, it stretches outward the
envelope field, making the bipolar magnetic arcade tend to ap-
proach an open field configuration (Fig. 7B). During this quasi-
static evolution process, the current is squeezed from the volu-
metric distribution into a vertical, narrow layer extending above
the PIL, forming a vertical CS (Fig. 7C).

As a critical point, when the thickness of the CS decreases
down to the grid resolution, magnetic reconnection sets in and
triggers an eruption. This transition from the pre-eruption to
eruption onset is clearly manifested in the evolution of energies
as shown in Fig. 8 (see the curves colored in magenta), which
have a sharp transition at t = 78. The kinetic energy increases
impulsively to nearly 7% original magnetic potential energy in
a time duration of ∆t = 5. Meanwhile, the magnetic energy re-
leases quickly during the eruption. The onset of the eruption can
be more clearly shown by the time profiles of the magnetic en-
ergy release rate and the kinetic energy increase rate, and both
of them have a sharp increase at the beginning of the eruption
(Fig. 8B).

With the onset of reconnection, a plasmoid (i.e., MFR in 3D)
originates from the tip of the CS and rises quickly, leaving be-
hind a cusp structure separating the reconnected, post-flare loops
from the un-reconnected field (Fig. 7C and D). The plasmoid ex-
pands quickly and meanwhile, an arc-shaped fast magnetosonic
shock is formed in front of the plasmoid. All of these evolv-
ing structures are proof of the typical coronal magnetic eruption
leading to CME. The shock marks the front edge of the CME,
and its average speed is about 603.4 km s−1 (Figs. 7D and 10).

Figures 8 and 9 show the temporal evolution of magnetic
and kinetic energies (and their changing rate) of all the cases
from CASE I to IX. Note that in each CASE, the energies are
normalized by the corresponding potential field energy, i.e., the
magnetic energy at t = 0. Overall, all the different runs (except
CASE VIII) show a similar evolution pattern: magnetic energy
first increases monotonically for a long time, approaching the
open field energy, while the kinetic energy remains to be a very
low level; at a critical point, the magnetic energy begins to de-
crease rapidly along with an impulsive rise of the kinetic energy
and the evolutions of the two energies are closely correlated in
time, which indicates that the free magnetic energy is released
to accelerate the plasma. In Supplementary Movies 2 and 3, we
show the evolution of current density on the central cross section
for all the cases. As can be seen, they all follow the same BA-
SIC scenario; that is, first a CS forms during the magnetic energy
increasing phase and then reconnection sets in and triggers erup-
tion. Therefore, these different runs demonstrate the robustness
of the BASIC mechanism.

Nevertheless, the magnitudes, or intensities, of the eruptions
in the different cases are different, as can be seen by comparing
the energy conversion rates during the impulsive phase. For ex-
ample, in the five experiments with increasing σy as shown in
Fig. 8, the maximum release rate of magnetic energy increases
first, reaching the largest at σy = 0.8 and then decreases with
higher σy, which is exactly consistent with the dependence of
Nmax on σy as shown in Fig. 4. Again, Fig. 9 shows that with the
increase of yc, the eruption intensity decreases, consistent with
the dependence of Nmax on yc as shown in Fig. 5. In Fig. 11A
and B, we further show how the strength of the PIL, i.e., L, is
related with the intensity of the eruption, as quantified by the
peak values of the kinetic energy increasing rate and the mag-
netic energy releasing rate as well as the speed of the leading
edge of the CME (i.e., the shock). It clearly shows that the erup-
tion intensity is correlated positively with the PIL strength. And
in Fig. 11C, we show the non-potentiality N at the onset time of
the eruption, as compared with the corresponding Nmax. The non-
potentiality increases overall with increase of the PIL strength,
consistent with (but a bit slower than) that of the Nmax. Interest-
ingly, we note that the non-potentiality at the eruption onset is
mostly close to one, which strikingly agrees with the statistical
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study of observed active regions (Moore et al. 2012), and hints
that the BASIC mechanism is responsible for those eruptions.

Figure 12 shows the central vertical cross section of current
density J (normalized by magnetic field strength B) at time im-
mediately close to the eruption onset time for the different exper-

iments. The location of the CS and the maximum current density
in the CS are also shown in Fig. 11D. These results are consis-
tent with the calculation of the open field in Section 2.2. Further-
more, we can find that the lower the position of the CS and the
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higher the current density are, the greater the explosive intensity
is (Fig. 11).

The only case in our experiments that did not reach an
eruption is CASE VIII. This is because during the quasi-static
shearing process, the field expands fast in the later phase (e.g.,
t > 100) and strongly presses the numerical boundaries before a
CS is formed (or before a sufficient amount of free magnetic en-
ergy is accumulated to approach a open field), therefore we have
stopped the simulation run to avoid a too much influence from
the numerical boundaries on the results. Ideally, with a larger
computational box, a free expansion of the field driven by the
surface shearing motion will create a CS, but its height is too
large (and the current density is too low) to trigger an efficient
eruption.

It is interesting that the ratio Eopen/Epot of around 1.7 is ap-
parently a threshold to start an eruption. Such a similar ratio has
been found in Amari’s simulations on flux rope formation and
instability (Amari et al. 2000; Amari et al. 2003a,b). Actually,
for all the different distributions of magnetic flux as we have
considered in this paper, the lowest ratio of Eopen/Epot is 1.7
(see Fig. 6A, where Nmax = Eopen/Epot − 1). The reason why
Eopen/Epot of 1.7 appears to be a threshold to start an eruption
is that in our scenario the CS can only form (and thus to trig-
ger an eruption) when the magnetic field is sufficiently sheared
such that its energy is close to the open field energy. Further-
more, as we have analyzed, the Eopen/Epot (or Nmax) should be
large enough to let the CS to form at a low height and with a
large current density, such that the reconnection can be efficient
to produce an eruption. Otherwise, if the Eopen/Epot is too small,
the free energy that can be attained is small, and the CS will
form at a too large height (and with too low current density)
to trigger an efficient eruption, as our experiment CASE VIII
shows. The smaller the ratio Eopen/Epot is, the higher the CS will
form, and the smaller the free energy can be reached, and thus
the less efficiently the eruption can be produced. For example,
in the extreme case when Eopen/Epot reaches it a lower limit of
Eopen/Epot = 1, which corresponds to the flux distribution with
two opposite polarities being infinitely far away from each other,
it cannot produce any eruption no matter how large the polarities
are rotated.

Although using a different scenario (i.e., first a flux rope is
created by surface converging and/or cancellation and then the
flux rope runs into instability to initiate an eruption), Amari’s
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simulations also show the same behavior that their eruption oc-
curs only when the magnetic energy is close to the open field
energy. Thus, both of our and Amari’s simulations using a single
bipolar flux distribution suggest that the ratio Eopen/Epot should
be larger than 1.7 to start an eruption. Amari’s simulations con-
sist of two important phases of energizing. Their first phase is the
same as ours, i.e., by rotating the polarities to inject free energy
into the field. The key difference is that in Amari et al. (2000);
Amari et al. (2003a,b) simulations the rotation is stopped before
a CS is formed; then, in the second phase, they modified the flux
content by opposite flux emerging (Amari et al. 2000) or surface
diffusion (Amari et al. 2003a), and/or modified the flux distri-
bution by surface converging flow (Amari et al. 2003b) at the
bottom boundary. In this phase, the magnetic topology will be
changed from a sheared arcade to a flux rope, through the slow
reconnection near the bottom boundary. More importantly, the
corresponding open field of the evolving magnetic flux distri-
bution will change, being faster than that of the total magnetic
energy, and can eventually lead to an eruption when the total
magnetic energy is close to the open field energy.

Finally, we note that the eruption onset times of the different
experiments are different. This is related to the magnetic energy
injection rate, which depends on the surface flow distribution.
As shown in Fig. 8, the magnetic energy injection rate decreases
when σy increases, and thus the eruption onset time is systemati-
cally postponed, because longer time is needed for free magnetic
energy accumulation.

3. Conclusions

It has long been known that major solar eruptions mostly oc-
cur in active regions with strongly-sheared and strong-gradient
PIL. There is no doubt that a strong magnetic shear is critical
for producing eruption, since it is directly related to the degree
of non-potentiality of the field. However, it lacks an explanation
why the flux distribution with a high-gradient PIL is favorable
for eruption. In this paper we provide such a physics explana-
tion, for the first time, basing on the BASIC mechanism with

different photospheric magnetic flux distributions, i.e., magne-
tograms, by combining theoretical analysis and numerical sim-
ulation. The BASIC mechanism refers to a simple and efficient
scenario in which a internal CS can form slowly in a gradually
sheared bipolar field and reconnection of the CS triggers and
drives the eruption (Jiang et al. 2021).

In principle, two requirements are essential to initiate a major
eruption by the BASIC mechanism, and they are closely related
to each other. One is to accumulate a sufficient amount of free
magnetic energy to power a major eruption, namely, the field
should be sufficiently non-potential. The other is to build up a
strong CS in the bipolar core field, that is, a CS with a high cur-
rent density and formed at a low height, such that reconnection
can release magnetic energy efficiently. Focusing on these two
key elements, we set up a series of magnetograms with equaling
unsigned flux but different flux distributions and first analyzed
the open fields corresponding to these magnetograms. This is
because the open field sets an upper limit for the energy that a
sheared bipolar field can store as well as the intensity of CS that
the field can form. By calculating the largest non-potentiality
Nmax and the peak current density based on the open field, we
find that magnetogram having a stronger PIL can contain more
non-potentiality Nmax and can form stronger CS, which indicates
the capability to initiate a larger eruption by the BASIC mecha-
nism. Furthermore, we find that the strength of the PIL, named as
L, can be quantified well by a line integral of gradient of the ver-
tical field Bz across the PIL, which should be valuable in future
studies for flare forecast based on magnetograms.

Then we selected nine representative magnetograms to con-
duct MHD simulations. All of the numerical experiments ex-
hibit the same evolution pattern; magnetic energy first increases
monotonically for a long time as driven by the boundary rota-
tional flow, and in the duration the kinetic energy remains within
a very low level, indicating that the system is a quasi-static evo-
lution process. Then at a critical point when the thickness of the
CS decreases down to the grid resolution, reconnection sets in
and triggers an eruption, during which the magnetic energy de-
crease rapidly along with an fast rise of the kinetic energy. A
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overall comparison of the eruptions in the different cases shows
a strong correlation of the eruption intensity with the strength of
the PIL. Specifically, with the increase of the PIL strength, both
the non-potentiality of the field and the strength of the CS at the
eruption onset increase, and consequently, the eruption intensity
increases, which confirms the two key conditions in the BASIC
mechanism.

In summary, through the combined study of theoretical anal-
ysis and numerical simulations, we demonstrated that the bipo-
lar field with magnetogram of strong PIL can hold more non-
potentiality and can form stronger internal CS, which are key to
the initiation of strong eruption. This is the physical reason why
magnetic field with a strong PIL is capable of producing major
eruption. Our study demonstrates the robustness of the BASIC
mechanism on the one hand, and discloses the physics reason
why a long and strong-gradient PIL is favorable for major erup-
tion on the other hand.
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